Triple Offset Metal Seated Butterfly Valve: a step

forward in valve design, a proven product for any application

Mousa Alharbi&Andrea GnecchiSaudi AramcoFluicon Valves

Paper overview

- Introduction of Butterfly Valves
- Advantage of Butterfly Valves
- Comparison of DOBV & TOBV
- Design Features of TOBV
- Application Suitability and advantages of TOBV
- Design and Manufacturing Considerations
- Operation Conditions and Installations
- Qualifications and Design Proofs
- Future Developments of TOBV
- Summary

Introduction to Butterfly

- Variety of Valve Types
- Operation Mechanism
- Types of Butterfly Valves
 - Concentric
 - Eccentric
 - Single Offset
 - Double Offset
 - Triple Offset

Advantages of Butterfly Valve

- **Economical**
- Light Weight & Compact
- **Performance Superiority**
- **Moderate Throttling**

Conventional Butterfly Valve Overview

DOBV

DOBV

TOBV vs. DOBV

VALVE CLOSING

STRESSED SEAL

Added Values of TOBV

• Distribution of Stresses

• True MTM Sealing

• Integral or Renewable seats

Design and Manufacturability Considerations Will all TOBV perform the same ?

- Contact Angles
- Material Selection
- Critical Machining
- Delicate Tolerances
- Engineering Involvement

True Understanding of Requirement

- Zero Leakage
 - TSO vs Bubble Tight

FCI 70-2 class V or class VI API 598 & API 6D, ISO Classes metal seated means ALLOWABLE LEAKAGE

- Actuator sizing and Preferred Direction
- Fugitive Emission

Operating Conditions and Installations:

- Direction of the flow:
- Installation Orientation
- Temperature Cycles
- Startup conditions:

Qualifications and Design Proofs

- Qualification Testing vs. Production Testing
- Cryogenic and Low temperature Test
- High Temperature Test
- Dynamic/endurance Tests
- Seal type test
- Fugitive Emission Test
- Special Process Simulation Qualifications

Application Suitability and Advantage of TOBV

- High Temperature
- Cryogenic
- Harsh/Unclean & Slurry
- Fugitive Emission
- Complex piping systems
- Unsteady Locations i.e., platforms, vessels ...etc.

- Higher Pressure Envelopes up to 2500 #
- **Top Entry TOBV**
- Enhanced Steam Jacketed TOBV:
- Double Block and Bleed TOBV
- Special TOBV

Future development of TOBV

- New Metallic Seat Materials
- Subsea Application
- Dual Performer Butterfly (Control-Isolate Valve)
 - A control and an isolation valve in one body.

Summary

- Types of Butterfly Valves
 - Confusion between the types of butterfly limited its market penetration
- Proven Promising Design and Performances
- Field Trust in Various Applications

Thank You **INDUSTRIALVALVESUMMIT**

Addendum

Leakage Comparison

API 598 leakage is in drops/min (liquid) and bubbles/min (air) API 6D & FCI 70-2 leakage is in ml/min

		API 598		API 6D		API 598/API 6D	FCI 70-2
Diameter		Metal Seated		Metal Seated		Soft Seated	Class VI
MM.	INCH	Liquid	Air (*)	Liquid	Air (**)	Liquid/Air (*)(**)	Air
80	3"	12	24	0.46	14	0	0.90
100	4"	12	24	0.61	18	0	1.70
150	6"	12	24	0.91	27	0	4.00
200	8"	20	40	1.21	36	0	6.75
250	10"	20	40	1.52	45	0	11.10
300	12"	20	40	1.83	54	0	16.00
350	14"	28	56	2.14	63	0	21.60
400	16"	28	56	2.44	72	0	28.40
450	18"	28	56	2.74	81	0	-
500	20"	28	56	3.05	90	0	-
600	24"	28	56	3.66	108	0	-
750	30"	28	56	4.57	135	0	-
900	36"	28	56	5.48	162	0	-
1000	40"	28	56	6.40	189	0	-

FCI 70-2 class VI does not define leakage above 16"

FCI 70-2 class VI test is performed always at 3 bar independently from the valve rating

(*) API 598 air test is required for metal seated ball and butterfly valves

(**) API 6D air test is optional

